An ITK Implementation of Physics-based Non-rigid Registration Method

Liu, Yixun1*,Kot, Andriy,Drakopoulos, Fotis,Fedorov, Andriy,Enquobahrie, Andinet,Clatz, Olivier,Chrisochoides, Nikos
1.NIH
Abstract

Abstract

As part of the ITK v4 project efforts, we have developed ITK filters for physics-based non-rigid registration (PBNRR), which satisfies the following requirements: account for tissue properties in the registration, improve accuracy compared to rigid registration, and reduce execution time using GPU and multi-core accelerators. The implementation has three main components: (1) Feature Point Selection, (2) Block Matching (mapped to both multi-core and GPU processors), and (3) a Robust Finite Element Solver. The use of multi-core and GPU accelerators in ITK v4 provides substantial performance improvements. For example, in average for the non-rigid registration of brain MRIs, the performance of the Block Matching filter is about 12 times faster when 12 hyperthreaded multi-cores are used and about 540 times faster when the Quadro 6000 with 448 threads is used in Dell Workstation.

Keywords

Finite ElementMulti-coreGPUNon-rigid RegistrationPhysical ModelRobust Regression
Manuscript
Source Code and Data

Source Code and Data

PBNRRCMakeLists.txt474 BPBNRR.cxx6.2 KBitkVTKTetrahedralMeshReader.h3.9 KBitkVTKTetrahedralMeshReader.hxx13.3 KB

Select a file to preview